September 2022

S M T W T F S
    123
45678910
11121314151617
181920 21222324
2526 27282930 

Style Credit

Expand Cut Tags

No cut tags
Wednesday, April 21st, 2004 07:49 am (UTC)
Waclaw Sierpinski, Polish mathematician.

It's a very basic fractal. (Also known as a Sierpinski gasket.) Take an equilateral triangle. Divide into 4 smaller equilateral triangles. Remove the center one. Recursively apply to the remaining 3. It quickly approaches something with an infinite border but zero surface area. A Menger sponge (http://mathworld.wolfram.com/mimg1726.gif) is a related, three-dimensional concept.

The same shape is created if you take Pascal's triangle (http://www.alunw.freeuk.com/pascal.html) and separate it into even and odd components.

They can also be generated through cellular automata, which is what I was thinking of here. Like Conway's Life, but one-dimensional. If a cell has one or two neighbors, turn it on, else turn it off. If you start with a single cell and plot the result into the second dimension, you get a Sierpinski triangle. If you start with random cells turned on, you end up with something like the seashell I linked to above.

Reply

If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting